tn3399_openwrt/target/linux/ath79/dts/ar9342_ubnt_nanobeam-ac.dts

39 lines
659 B
Plaintext
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2019-01-08 14:27:57 +00:00
#include "ar9342_ubnt_wa_1port.dtsi"
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2019-01-08 14:27:57 +00:00
/ {
compatible = "ubnt,nanobeam-ac", "ubnt,wa", "qca,ar9342";
model = "Ubiquiti NanoBeam AC Gen1 (WA)";
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2019-01-08 14:27:57 +00:00
aliases {
led-boot = &led_rssi3;
led-failsafe = &led_rssi3;
led-upgrade = &led_rssi3;
};
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2019-01-08 14:27:57 +00:00
leds {
compatible = "gpio-leds";
rssi0 {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "blue:rssi0";
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2019-01-08 14:27:57 +00:00
gpios = <&gpio 11 GPIO_ACTIVE_LOW>;
};
rssi1 {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "blue:rssi1";
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2019-01-08 14:27:57 +00:00
gpios = <&gpio 16 GPIO_ACTIVE_LOW>;
};
rssi2 {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "blue:rssi2";
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2019-01-08 14:27:57 +00:00
gpios = <&gpio 13 GPIO_ACTIVE_LOW>;
};
led_rssi3: rssi3 {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "blue:rssi3";
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2019-01-08 14:27:57 +00:00
gpios = <&gpio 14 GPIO_ACTIVE_LOW>;
};
};
};